MEMORANDUM TO:

FROM:

DATE:

SUBJECT:

Nate Wynsma
Lexington Homes

Andrew Bowen
Consultant

Luay R. Aboona, P.E., PTOE
Principal

March 10, 2023
Traffic Study Addendum
Riverwoods Reserve Residential Development
Riverwoods, Illinois

This memorandum is an addendum to the traffic impact study prepared by Kenig, Lindgren, O’Hara, Aboona, Inc. (KLOA, Inc.) dated September 12, 2022 for the proposed Riverwoods Reserve residential development in Riverwoods, Illinois. The traffic impact study evaluated the impact of a proposed 69-unit townhome development to be located on the north side of Deerfield Road east of Milwaukee Avenue (Illinois Route 21). Access was planned to be provided via an access road on Deerfield Road that would connect to the Colonial Court commercial development in the future and one additional access drive on Deerfield Road at the eastern end of the site.

The purpose of this addendum is to reevaluate the access system of the proposed townhome development with the following changes:

- The development will consist of 54 townhome units. This is 15 units less than was originally proposed.
- The access drive at the eastern end of the site has been eliminated.
- The access road will connect to the Colonial Court commercial development west of the site upon completion of the proposed development. This connection was mentioned in the original report but was not evaluated as the timing of the connection was unknown.

Updated Development Plan

As proposed, the site will be developed with Riverwoods Reserve, a townhome development with 54 townhome units in 10 buildings. A copy of the updated site plan is included in the Appendix.

Access to the development will be provided via a proposed access road on the north side of Deerfield Road located approximately 820 feet east of Milwaukee Avenue. The access road will extend north from Deerfield Road and then west towards its proposed connection with the existing Colonial Court commercial development that borders the site to the west. The access road will provide one lane in each direction with on-street parking provided on one side of the road. The access road will replace an existing Federal Life Companies access drive.

On-street parking on the access road should be provided on the north side of the road. In order to ensure adequate sight lines for vehicles turning to and from the townhome development access drive, parking should be prohibited via signage within 30 feet of the access drive.

At its intersection with Deerfield Road, the access road will be aligned opposite the CubeSmart access road. The access road will provide one inbound lane and two outbound lanes striped to provide an exclusive left-turn lane and a shared through/right-turn lane. Outbound movements will be under stop sign control. As part of the recently completed Thorntons fuel center located in the southeast corner of Milwaukee Avenue with Deerfield Road, an exclusive eastbound left-turn lane was built on Deerfield Road that will serve the access road. This turn lane provides 117 feet of storage and a 270 -foot taper. It should be noted that the turn lane on Deerfield Road will be maintained with the proposed LCDOT improvements to Deerfield Road.

Internal Townhome Access

Access to the individual townhomes will be provided via a loop roadway that will operate in a oneway counterclockwise direction. The loop road will intersect the proposed access road approximately 270 feet north of Deerfield Road. At this intersection the loop road will provide one inbound lane and one outbound lane with outbound movements under stop sign control.

Fire Department Access

The ability of firetrucks to access the proposed townhomes was evaluated using AutoTurn software. Exhibits prepared by Haeger Engineering illustrating the ability of firetrucks to circulate the site are included in the Appendix. As can be seen, the proposed access road and internal loop road can accommodate firetruck turning movements.

On-Site Parking

Within the site, parking for residents will be provided within individual garages and on individual driveways. Parking for guests will be provided on the inside of the loop road. Signage indicating that the parking spaces on the loop road are for guest use only should be provided. Furthermore, signage prohibiting parking on the segment of the loop roadway that allows two-way traffic should also be posted.

Peak Hour Traffic Volumes

As with the original study, the number of peak hour trips estimated to be generated by the proposed development was based on vehicle trip generation rates contained in Trip Generation Manual, $11^{\text {th }}$ Edition, published by the Institute of Transportation Engineers (ITE). The "Single Family Attached Housing" (Land-Use Code 215) rates were used for the proposed development. Table 1 summarizes the trips projected to be generated by the proposed townhome development.

Table 1
ESTIMATED PEAK HOUR AND DAILY TRIP GENERATION

$\begin{aligned} & \text { ITE } \\ & \text { Land } \end{aligned}$	Type/Size	Weekday Morning Peak Hour			Weekday Evening Peak Hour			Daily Trips		
Code		In	Out	Total	In	Out	Total	In	Out	Total
215	Single Family Attached Housing (54 Units)	6	16	22	17	11	28	181	181	362

The estimated weekday morning and evening peak hour traffic volumes that will be generated by the proposed townhome development were assigned to the intersection of Deerfield Road with the proposed access road in accordance with the directional distribution described in the original traffic study. It should be noted that some townhome traffic may utilize the connection to Colonial Court to access Milwaukee Avenue directly. However, to provide a conservative analysis, all development-generated traffic was assigned to the intersection of Deerfield Road with the proposed access road. Figure A illustrates the new assignment of the development trips. All figures are included in the Appendix of the report.

Colonial Court Connection

As previously mentioned, the proposed access road will provide a connection to the existing Colonial Court commercial development. It is anticipated that some of the existing traffic generated by Colonial Court will utilize the proposed access road to access Deerfield Road. This is particularly true as the existing access drive on Deerfield Road that serves Colonial Court will be restricted to right-turn only movements with the completion of the planned LCDOT improvements to Deerfield Road. Table 2 summarizes the estimated trips currently generated by Colonial Court during the peak hours based on ITE trip generation rates. Figure B illustrates the percentage of the Colonial Court traffic that is expected to turn at the intersection of Deerfield Road with the proposed access road as well as the corresponding reassignment of Colonial Court traffic.

Table 2
ESTIMATED COLONIAL COURT PEAK HOUR TRIP GENERATION

ITE							
Land- Use Code	Type/Size	Weekday Morning Peak Hour			Weekday Evening Peak Hour		
	In	Out	Total	In	Out	Total	
922	Strip Retail Plaza (30,000 s.f.)	42	29	71	85	85	170
Drive-In Bank (5 Drive-In Lanes)	26	17	43	66	69	135	
	High-Turnover Sit-Down Restaurant (6,500 s.f.)	34	28	62	36	23	59
	Total	$\mathbf{1 0 2}$	$\mathbf{7 4}$	$\mathbf{1 7 6}$	$\mathbf{1 8 7}$	$\mathbf{1 7 7}$	$\mathbf{3 6 4}$

Year 2024 Total Projected Volumes

The development-generated traffic (Figure A) and Colonial Court traffic reassignment (Figure B) were added to the projected Year 2024 no-build traffic volumes, as illustrated in the original traffic study, taking into account the removal of the existing Federal Life Companies buildings and the completion of LCDOT's planned improvements to Deerfield Road. Figure C illustrates the Year 2024 total projected traffic volumes.

Traffic Analyses

Intersection analyses were performed for the weekday morning and weekday evening peak hours for the Year 2024 total projected traffic volumes at the intersection of Deerfield Road with the proposed access road assuming the completion of LCDOT's planned improvements to Deerfield Road. The traffic analyses were performed using the same methodologies as the original traffic impact study.

Summaries of the traffic analysis results showing the level of service and overall intersection delay are presented in Table 3. Summary sheets for the capacity analyses are included in the Appendix.

Table 3
CAPACITY ANALYSIS RESULTS - YEAR 2024 TOTAL PROJECTED CONDITIONS DEERFIELD ROAD WITH THE PROPOSED ACCESS ROAD

Movement	Weekday Morning Peak Hour		Weekday Evening Peak Hour	
	LOS	Delay	LOS	Delay
- Eastbound Left Turn	B	14.6	C	18.9
- Westbound Left Turn	B	12.1	A	9.6
- Northbound Left Turn	E	45.8	D	32.5
- Northbound Right Turn	B	14.6	B	11.9
- Southbound Left Turn	E	35.6	F	61.2
- Southbound Right Turn	B	13.5	C	15.4
Includes LCDOT roadway improvements	LOS = Level of Service	Delay is measured in seconds.		

Proposed Access Road Evaluation

Under Year 2024 total projected conditions, assuming the completion of the planned roadway improvements, outbound left-turn movements from the proposed access road are projected to operate at Level of Service (LOS) E during the weekday morning peak hour and LOS F during the weekday evening peak hour. This delay is typical and expected at the unsignalized intersection of an access road with an arterial roadway such as Deerfield Road. While outbound left-turn vehicles may experience some delay, they will be able to turn onto Deerfield Road given the following:

- The outbound left-turn movement is projected to operate with a volume to capacity (v/c) ratio of less than $1.0(0.4)$ and $95^{\text {th }}$ percentile queues of one two vehicles.
- The signalized intersection of Deerfield Road with Milwaukee Avenue will create gaps in the traffic stream, allowing vehicles to exit.

Outbound right-turn movements from the access drive and inbound left-turn movements from Deerfield Road are projected to operate at LOS C or better during both peak hours. Further, eastbound $95^{\text {th }}$ percentile queues are not projected to exceed one to two vehicles, which can be accommodated within the existing left-turn lane.

When the projected traffic volumes at this access road are compared to the right-turn lane guidelines in Table 5.4 of Lake County's Highway Access and Use Ordinance Technical Reference Manual, a westbound right-turn lane on Deerfield Road will not be warranted serving this access road during either peak hour. It should be noted that based on Signal Warrant 3 (Peak Hour) included in the Federal Highway Administration's Manual on Uniform Traffic Control Devices for Streets and Highways (MUTCD), 2009, a traffic signal will not be warranted at this intersection.

As indicated earlier, all site traffic was assumed to utilize the proposed access road. However, site traffic will be able to utilize the connection to Colonial Court to access the site. This will reduce the volume of traffic turning to/from the access road and on area roadways in general as vehicles will have access to both developments from both Milwaukee Avenue and Deerfield Road.

As such, the proposed access road will be able to adequately accommodate the developmentgenerated traffic.

Area Roadway Impact Evaluation

The proposed changes to the development plan will reduce the impact of the proposed development on the area roadway system given the following:

- The elimination of the access drive at the east of the site will reduce the number of access points in close proximity to each other along Deerfield Road.
- The reduced number of townhome units will generate fewer trips.
- The connection of the proposed access road to Colonial Court will reduce the need for traffic generated by Colonial Court and the townhome development to traverse the intersection of Milwaukee Road with Deerfield Road.

Conclusion

Based on the preceding analyses and recommendations, KLOA, Inc. has concluded as follows:

- Access for the proposed Riverwoods Reserve residential development will only be provided via the proposed access road that will connect to Deerfield Road and Colonial Court.
- On-street parking should be provided on the north side of the proposed access road.
- Access to the individual buildings within the site will be provided via a one-way counterclockwise loop road. Guest parking will be provided along the inside of the loop road.
- Firetrucks will be able to access all proposed buildings.
- The proposed access road will adequately accommodate projected traffic volumes.
- The traffic that will be generated by the proposed development can be accommodated by the area roadways.

Appendix

Preliminary Site Plan AutoTurn Exhibits

Figures A, B, and C ITE Trip Generation Worksheets Level of Service Criteria Capacity Analysis Summary Sheets

Preliminary Site Plan

AutoTurn Exhibits

Figures A, B, and C

ITE Trip Generation Worksheets

Single-Family Attached Housing
 (215)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 22
Avg. Num. of Dwelling Units: 120
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
7.20	$4.70-10.97$	1.61

Data Plot and Equation

Single-Family Attached Housing
 (215)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 46
Avg. Num. of Dwelling Units: 135
Directional Distribution: 31% entering, 69% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.48	$0.12-0.74$	0.14

Data Plot and Equation

Single-Family Attached Housing
 (215)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 51
Avg. Num. of Dwelling Units: 136
Directional Distribution: 57% entering, 43% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.57	$0.17-1.25$	0.18

Data Plot and Equation

Strip Retail Plaza (<40k) (822)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 5
Avg. 1000 Sq. Ft. GLA: 18
Directional Distribution: 60\% entering, 40% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
2.36	$1.60-3.73$	0.94

Data Plot and Equation

Strip Retail Plaza (<40k) (822)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 25
Avg. 1000 Sq. Ft. GLA: 21
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
6.59	$2.81-15.20$	2.94

Data Plot and Equation

Drive-in Bank
 (912)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 44
Avg. 1000 Sq. Ft. GFA: 5
Directional Distribution: 58% entering, 42% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
9.95	$2.12-29.47$	6.00

Data Plot and Equation

Drive-in Bank
 (912)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 114
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
21.01	$3.04-109.91$	15.13

Data Plot and Equation

High-Turnover (Sit-Down) Restaurant (932)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 37
Avg. 1000 Sq. Ft. GFA: 5
Directional Distribution: 55\% entering, 45\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
9.57	$0.76-102.39$	11.61

Data Plot and Equation

High-Turnover (Sit-Down) Restaurant
 (932)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 104
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 61\% entering, 39\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
9.05	$0.92-62.00$	6.18

Data Plot and Equation

Level of Service Criteria

Signalized Intersections		
Level of Service	Interpretation	$\begin{array}{r} \text { Average Control } \\ \text { Delay } \\ \text { (seconds per vehicle) } \end{array}$
A	Favorable progression. Most vehicles arrive during the green indication and travel through the intersection without stopping.	≤ 10
B	Good progression, with more vehicles stopping than for Level of Service A.	$>10-20$
C	Individual cycle failures (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear. Number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.	>20-35
D	The volume-to-capacity ratio is high and either progression is ineffective or the cycle length is too long. Many vehicles stop and individual cycle failures are noticeable.	> $35-55$
E	Progression is unfavorable. The volume-to-capacity ratio is high and the cycle length is long. Individual cycle failures are frequent.	>55-80
F	The volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.	>80.0
Unsignalized Intersections		
Level of Service Average T		tal Delay (SEC/VEH)
	A	0-10
	B	> $10-15$
	C	> $15-25$
	D	> $25-35$
	E	> $35-50$
F		>50

Capacity Analysis Summary Sheets Year 2024 Projected Weekday Morning Peak Hour Conditions

HCM 6th TWSC
3: Cubesmart Access Road/West Site Access Drive \& Deerfield Road

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	虫		${ }^{7}$	性		${ }^{1}$	\uparrow		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	15	1169	7	27	900	11	33	0	3	14	0	17
Future Vol, veh/h	15	1169	7	27	900	11	33	0	3	14	0	17
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	117	-	-	185	-	-	0	-	-	0	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	1	-	-	1	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	0	5	0	0	3	0	0	0	0	0	0	0
Mvmt Flow	17	1299	8	30	1000	12	37	0	3	16	0	19

Capacity Analysis Summary Sheets

Year 2024 Projected Weekday Evening Peak Hour Conditions

HCM 6th TWSC
3: Cubesmart Access Road/West Site Access Drive \& Deerfield Road

Intersection												
Int Delay, s/veh	2.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\#	㻢		${ }^{7}$	蚛 ${ }^{\text {a }}$		${ }^{1}$	$\hat{\beta}$		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	32	754	11	27	1158	23	53	0	15	30	0	17
Future Vol, veh/h	32	754	11	27	1158	23	53	0	15	30	0	17
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	117	-	-	185	-	-	0	-	-	0	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	1	-	-	1	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, \%	0	2	0	0	3	0	0	0	22	0	0	0
Mvmt Flow	34	811	12	29	1245	25	57	0	16	32	0	18

